Showing posts with label e- Journal. Show all posts
Showing posts with label e- Journal. Show all posts

Tuesday, April 9, 2019

IJIRST : How to Write Paper : 2019


Call for Papers | Vol. 5 Issue 11 - April #2k19
Last date of Paper submission 25th March '19 
for More Info or Query Cont. us: 07405046536
Email us: ijirst.journal@gmail.com
Submit your Paper @ http://www.IJIRST.org


Tuesday, February 21, 2017

LTNCS Conference-2017 | IJIRST


We are pleased to invite you to attend/participate in the  National Conference LTNCS-2017 will be held on 17th March 2017, organized by Computer Engineering Department of SAL INSTITUTE OF TECHNOLOGY AND ENGINEERING RESEARCH, Ahmedabad.


LTNCS-2017 aims to gather technocrats from different states of India on a common platform to promote research activities in all fields of Networking and Cyber Security. LTNCS-2017 adhere different Technical Topics as under.
         1). Cybercrime
         2). Distributed Network
         3). Forensic & Cyber Security with Cloud
         4). Security issues with big data
         5). Ethical hacking

              We would like to invite research papers based on original research work from Researchers, Academicians, Faculty Members and Students in various innovative areas of Networking and Cyber Security.
              All submitted papers will be peer-reviewed by renowned experts. The reviewed papers will be published in one of the reputed technical journal namely IJIRST “International Journal for Innovative Research in Science & Technology” having impact factor 3.559.
              With the same, we take this opportunity to invite you all to participate in this conference and share your innovative ideas and research. We shall appreciate your participation in the conference and confirmation for the same at the earliest.

We request you to forward this information to your faculty colleagues, research scholars and students for contributing research papers for LTNCS-2017.

For more information about the conference kindly contact us

Website:            http://conference.ijirst.org/
Email:               ltncs2017@gmail.com
Contact No:      9998843943, 8128989597

Saturday, July 30, 2016

IJIRST Journal: Volume 3, Issue 3

International Journal for Innovative Research in Science and Technology (IJIRST) is a one of the popular international multidisciplinary, open access, peer-reviewed, fully refereed journal. It is an international journal that aims to contribute to the constant innovative research and training, so as to promote research in the field of science and technology.

Goal:

IJIRST is a monthly international journal publishing the finest peer-reviewed research and review articles in all fields of Science and technology. IJIRSTfollows stringent guidelines to select the manuscripts on the basis of its originality, importance, timeliness, accessibility, grace and astonishing conclusions. IJIRST is also popular for rapid publication of accepted manuscripts. 
                      IJIRST also aims to reach a large number of audiences worldwide with original and current research work completed on the vital issues of the above important disciplines.





Monday, December 7, 2015

A Time Domain Reference-Algorithm for Shunt Active Power Filters



Abstract:- The aim of this paper is to identify an optimum control strategy of three-phase shunt active filters to minimize the total harmonic distortion factor of the supply current Power Quality (PQ) is an important measure of an electrical power system. The term PQ means to maintain purely sinusoidal current wave form in phase with a purely sinusoidal voltage wave form. The power generated at the generating station is purely sinusoidal in nature. The deteriorating quality of electric power is mainly because of current and voltage harmonics due to wide spread application of static power electronics converters, zero and negative sequence components originated by the use of single phase and unbalanced loads, reactive power, voltage sag, voltage swell, flicker, voltage interruption etc. The simulation and the experimental results of the shunt active filter, along with the estimated value of reduction in rating, show that the shunt filtering system is quite effective in compensating for the harmonics and reactive power, in addition to being cost-effective.   

Keywords: Shunt voltage inverter APF, Time domain, instantaneous active power, carrier based PWM, Control strategy etc.

I.     Introduction

The wide use of power devices (based on semi-conductor switches) in power electronic appliances (diode and thyristor rectifiers, electronic starters, UPS and HVDC systems, arc furnaces, etc…) induces the appearance of the dangerous phenomenon of harmonic currents flow in the electrical feeder networks, producing distortions in the current/voltage waveforms. As a result, harmful consequences occur: equipment overheating, malfunction of solid-state material, interferences with telecommunication systems, etc... Damping harmonics devices must be investigated when the distortion rate exceeds the thresholds fixed by the ICE 61000 and IEEE 519 standards. For a long time, tuned LC and high pass shunt passive filters were adopted as a viable harmonics cancellation solution.

II.    Shunt active filtering algorithms

The control algorithm used to generate the reference compensation signals for the active power filter determines its effectiveness. The control scheme derives the compensation signals using voltage and/or current signals sensed from the system. The control algorithm may be based on frequency domain techniques or time domain techniques. In frequency domain, the compensation signals are computed using Fourier analysis of the input voltage/current signals. In time domain, the instantaneous values of the compensation voltages/currents are derived from the sensed values of input signals. There are a large number of control algorithms in time domain such as the instantaneous PQ algorithm, synchronous detection algorithm, synchronous reference frame algorithm and DC bus voltage algorithm. The instantaneous PQ algorithm by Akagi  is based on Park’s transformation of input voltage and current signals from which instantaneous active and reactive powers are calculated to arrive at the compensation signals. This scheme is most widely used because of its fast dynamic response but gives inaccurate results under distorted and asymmetrical source conditions.

For  More Information Click Here

Friday, November 20, 2015

Performance Assessment for Students using Different Defuzzification Techniques


Author Name:- Anjana Pradeep, Jeena Thomas

Department of Computer Science & Engineering

Abstract:- The aim of this study is to evaluate the performance of students using a fuzzy expert system. The fuzzy process is based solely on the principle of taking non-precise inputs on the factors affecting the performance of students and subjecting them to fuzzy arithmetic to obtain a crisp value of the performance. The system classifies each student's performance by considering various factors using fuzzy logic. Aimed at improving the performance of fuzzy system, several defuzzification methods other than the built methods in MATLAB have been devised in this system for producing more accurate and quantifiable result.  This study provides comparison and in depth examination of various defuzzification techniques like Weighted Average Formula (WAF), WAF-max method and Quality Method (QM). A new defuzzification method named as Max-QM which is extended from Quality method that falls within the general framework is also given and commented upon in this study.      

Keywords: Fuzzy logic, Fuzzy Expert System, Defuzzification, Weighted Average Formula, Quality Method 

I.   Introduction

An expert system is a software program that can be used to solve complex reasoning tasks that usually require a (human) expert. In other words, an expert system should help a novice, or partly experienced, problem solver, to match acknowledged experts in the particular domain of problem solving that the system is designed to assist. To be more specific, expert systems are generally conceptualized as shown in Fig 1. The user makes an interaction through the interface system and the system questions the user through the same interface in order to obtain the vital information upon which a decision is to be made. Behind this interface, there are two other sub-systems viz. the knowledge base, which is made up of all the domain-specific knowledge that human experts use when solving that category of problems and the inference engine, a system that performs the necessary reasoning and uses knowledge from the knowledge base in order to come to a judgment with respect to the problem modelled [1].
     Expert system has been playing a major role in many disciplines such as in medicines, assist physician in diagnosis of diseases, in agriculture for crop management, insect control, in space technology and  in power systems for fault diagnosis[5]. Some expert systems have been developed to replace human experts and to aid humans. The use of an expert system is increasing day by day in today’s world [40]. Expert systems are becoming an integral part of engineering education and even other courses like accounting and management are also accepting them as a better way of teaching[4].Another feature that makes expert system more demanding for students is its ability to adaptively adjust the training for each particular student on the bases of individual students learning pace. This feature can be used more effectively in teaching engineering students. It should be able to monitor student’s progress and make a decision about the next step in training.

Fig. 1: Expert system structure
        The few expert systems available in the market present a lot of opportunities for the students who desire more spotlight and time to learn the subjects. Some expert systems present an interactive and friendly environment for students which encourage them to study and adopt a more practical approach towards learning. The expert systems can also act as an assistor or substitute for the teacher. Expert systems focus on each student individually and also keep track of their learning pace. This behavior of an expert system provides autonomous learning procedure for both student and teacher, where teachers act as mentor and students can judge their own performance. Expert system is not only beneficial for the students but also for the teachers which help them guiding students in a better way.
        The integration of fuzzy logic with an expert system enhances its capability and is called a fuzzy expert system, as it is useful for solving real world problems which do not require a precise solution. So, there is a need to develop a fuzzy expert system as it can handle imprecise data efficiently and reduces the manual working while enhancing the use of expert system[40].

      There are various factors inside and outside college that results in poor quality of academic performance of students[2,3]. To determine all the influencing factors in a single effort is a complex and difficult task. It necessitates a lot of resources and time for an educator to identify all these factors first and then plan the classroom activities and approaches of teaching and learning. It also requires appropriate training, organizational planning and skills to conduct such studies for determining the contributing factors inside and outside college. This process of identification of determinants must be given full attention and priority so that the teachers may be able to develop instructional strategies for making sure that all the students be provided with the opportunities to attain at their fullest potential in learning and performance.  By using suitable statistical package it was found that communication, learning facilities, proper guidance and family stress were the factors that affect the student performance. Communication, learning facilities and proper guidance showed a positive impact on student performance and family stress showed a negative impact on student performance. It is indicated that communication is more important factor that affect the student performance than learning facilities and proper guidance [3].

      In this research article seven most important factors are included which affect the students’ performance. These are personal factors, college environment, family factors, and university factors, teaching factors, attendance and marks obtained by students. All these factors are scaled and ranked based on the various sub-factors that are further divided from the base factors. In this study the students’ marks have been focused and not solely on social, economic, and cultural features.  To evaluate students’ performance, fuzzy expert system has been developed by considering all the seven factors as inputs to the system. This system has been developed by taking the data of students collected from St. Josephs College of Engineering and Technology, Palai affiliated to M.G University.

II.   Literature review

In recent years, many researchers worked on the applications of fuzzy logic and fuzzy sets in educational assessments and grading systems. Biswas[25] presented two methods for evaluating  students’ answer scripts using fuzzy sets and a matching function: a fuzzy evaluation method (FEM) and a generalized fuzzy evaluation method. He used fuzzy set theory in student evaluation and found that it is potentially finer than awarding grades or numbers when evaluating answer scripts. He also highlighted that the importance of education system should be to provide students with the evaluation reports regarding their test/examination as sufficient as possible with unavoidable error as small as possible so as to make evaluation system more transparent and fairer to students.

                Chen and Lee [26] presented two methods for applying fuzzy sets to overcome the problem of giving two different fuzzy marks to students with the same total score which could arise from Biswas’ method. Their methods perform calculations much faster and complicated matching operations were not required. Echauz and Vachtsevanos [27] proposed a fuzzy logic system for translating traditional scores into letter-grades. Law [28] built a fuzzy structure model with its algorithm to aggregate different test scores in order to produce a single score for individual students in an educational grading system. A method to build the membership functions (MFs) of several linguistic values with different weights was also proposed in this paper. 

For more Information CLICK HERE

Wednesday, September 23, 2015

#IJIRST Journal




Top Rated International Journal  Recommended By Most of University

Impact Factor : 1.638

ISSN : 2349-6010

Publish Your Research article with ijirst.org 

We Accept Only Quality Papers...

No Profit No loss International Journal to Promote Research Scholar..


submit Your Article : www.ijirst.org

Wednesday, September 16, 2015

Design and Modeling of Drum Handling Equipment #IJIRST Journal



Abstract:- This paper presents the use of drum handling equipment in the industries to reduce worker for drum handling. Material handling effect on human studied in this paper. Also study different material handling equipment used in industries.

Keywords: Industries, Material Handlings, Material Handling Hazards

I.       Introduction

In many industries raw material and finished product handled in 210Lit. Drum. They handle drum manually. In work place drum transported, lifted, Loaded, tilted etc. manually. Handling heavy load manually takes more time, also it is hazards and risky. In small pharmaceutical company around 25 different type of raw material use. It is in liquid form which is taken out from 210lit. Drum by loading on horizontal stand. Company requires effective material handling equipment to solve material handling problem.  
Manual drum handling equipment is used to do various function like transport, tilting, lifting, loading, unloading etc. In small industries or work shop drum barrel is handled manually which takes more time and more worker. Handling drum manually without using any equipment is hazards.           
Manual handling is transporting or supporting of a load by one or more workers. It includes the following activities: lifting, holding, putting down, pushing, pulling, carrying or moving of a load.1 The load can be an animate (people or animals) or inanimate (boxes, tools etc.) object.

Manual handling occurs in almost all working environments (factories, warehouses, building sites, farms, hospitals, offices etc.). It can include lifting boxes at a packaging line, handling construction materials, pushing carts, handling patients in hospitals, and cleaning. 

II.       Concept

In this, following objectives are to be carried out –
  1.  To minimize worker for Drum transporting, loading, unloading, lifting and tilting process.
  2.  To study material handling equipment for Drum handling.
  3.  To study the lifting and loading effect on human.
  4.   To study the ergonomic of material handling.
  5.  To Design modified drum tilting mechanism.
  6.  To fabricate prototype model.
  7.  Testing and conclusion.

This paper is published in our journal and for more information CLICK Here









Saturday, August 22, 2015

Modeling of Student’s Performance Evaluation

Abstract:- We proposed a Fuzzy Model System (FMS) for student performance evaluation. A suitable fuzzy inference mechanism has been discussed in the paper. We mentioned how fuzzy principal can be applying in student performance prediction. This model can be useful for educational organization, educators, teachers, and students also. We proposed this model especially for first year students who need some extraordinary monitoring to their performance. Modeling based on the past academic result and on some information they earlier submitted for admission purposes.

Keywords: Fuzzy Logic, Membership Functions, Academic Evaluation

I.       Introduction

Success rate of any Educational Institute or Organization may depend upon the prior evaluation of student’s performance. They use different method for student’s performance evaluation usually any educational organization use grading system on the basis of academic performance especially higher education. We can involve other key points to evaluating student performance such as communication skill, marketing skill, leadership skill etc.
Performance evaluation can provide information. Information generated by evaluation can be helpful for students, teachers, educators etc. to take decisions.[6] In corporate field employers highly concern about all mentioned skill. If an educational institute involve other than academic performance for evaluation then it will be beneficial for students as well as organization also.

A.      Traditional Evaluation Method

Traditionally student’s performance evaluate done by academic performance like class assignment, model exams, Yearly etc. This Primary technique involves either numerical value like 6.0 to 8.0 which may call grade point average or 60% to 80% i.e average percentage. Some organization also using linguistic terms like pass, fail, supply for performance evaluation. Such kind of evaluation scheme depends upon criteria which are decided by experienced evaluators. So that evaluation may be approximate.
The objective of this paper is to present a model .which may be very useful for teachers, organization and students also. It helps to better understanding weak points which acts as a barrier in student’s progress.

B.      Method Used

Fuzzy logic can be described by fuzzy set. It provide reasonable method / technique through input and output process fig[1].Fuzzy set can be defined by class of object, there is no strident margins for object[1].A fuzzy set formed by combination of linguistic variable using linguistic modifier.
Linguistic Modifier is link to numerical value and linguistic variable [2]. In our work linguistic variable is performance and linguistic modifiers are good, very good, excellent, and outstanding.

For more information go to below link.

http://ijirst.org/Article.php?manuscript=IJIRSTV2I3022

http://ijirst.org/index.php?p=SubmitArticle

ijirst.org

Friday, October 31, 2014

New Camera Sensor Eliminates Need for Flash #IJIRST

No flash? No problem. A new imaging sensor could soon make it possible for photographers to take clear, sharp photos, even in dim lighting.
Featured image
for more detail click here: #IJIRST
Created by a team of researchers at Nanyang Technological University (NTU) in Singapore, the new sensor is highly sensitive to both visible and infrared light, which means it could be used in everything from the family Nikon to surveillance and satellite cameras.
IJIRST - IMPACT FACTOR 1.638
The sensor, which is 1,000 times more sensitive to light than the imaging sensors of most of today's cameras, gets this high photoresponse from its innovative structure.
main article of this post : click here

Thursday, October 16, 2014

360-Degree Infrared Vision : #IJIRST

thermal radar
Thermal Radar
Photograph by Ralph Smith
Michael Dortch was building video surveillance trailers for industrial parks in Colorado when his clients started asking for near-omniscient views of their properties. They wanted to see intruders in the dark from all angles, but such coverage required up to seven thermal infrared cameras and cost more than $100,000. So Dortch and a colleague spent four years developing a cheaper, more capable alternative. Their Thermal Radar system provides 360-degree infrared coverage that can spot people, fires, vehicles, and more.
main article : click here to view 
The heart of the invention is a single, spinning thermal sensor. Onboard processors constantly stitch images together for a refreshing panoramic video feed, and intelligent software finds threats.
A finished unit will cost about $16,000—many times cheaper than any system that comes close—and should be ready for its debut later this year. The first and biggest market will be corporate security. But the forest service, the Utah Department of Transportation, and even the Pentagon, Dortch says, also have his invention on their radar. how it works

Tuesday, October 14, 2014

Evolution of extreme parasites explained by scientists

Extreme adaptations of species often cause such significant changes that their evolutionary history is difficult to reconstruct. Zoologists at the University of Basel in Switzerland have now discovered a new parasite species that represents the missing link between fungi and an extreme group of parasites. Researches are now able to understand for the first time the evolution of these parasites, causing disease in humans and animals. The study has been published in the latest issue of the scientific journal Proceedings of the National Academy of Sciences (PNAS).
Parasites use their hosts to simplify their own lives. In order to do so, they evolved features that are so extreme that it is often impossible to compare them to other species. The evolution of these extreme adaptations is often impossible to reconstruct. The research group lead by Prof. Dieter Ebert from the Department of Environmental Science at the University of Basel has now discovered the missing link that explains how this large group of extreme parasites, the microsporidia, has evolved. The team was supported in their efforts by scientists from Sweden and the U.S.
Between fungi and parasite
The team of zoologists lead by Prof. Dieter Ebert has been studying the evolution of microsporidia for years. When they discovered a new parasite in water fleas a couple of years ago, they classified this undescribed species as a microsporidium, mostly because it possessed the unique harpoon-like infection apparatus (the polar-tube), one of the hallmarks of microsporidia. The analysis of the entire genome had several surprises in store for them: The genome resembles more that of a fungi than a microsporidium and, in addition, also has a mitochondrial genome. The new species, now named Mitosporidium daphniae, thus represents the missing link between fungi and microsporidia.
Source:
The above story is based on materials provided by Universität BaselNote: Materials may be edited for content and length.

For more details click here: IJIRST